4 found
Order:
  1.  29
    Hamiltonian mechanics is conservation of information entropy.Gabriele Carcassi & Christine A. Aidala - 2020 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 71:60-71.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  2.  37
    On the Common Logical Structure of Classical and Quantum Mechanics.Andrea Oldofredi, Gabriele Carcassi & Christine A. Aidala - 2024 - Erkenntnis 89 (4):1507-1533.
    At the onset of quantum mechanics, it was argued that the new theory would entail a rejection of classical logic. The main arguments to support this claim come from the non-commutativity of quantum observables, which allegedly would generate a non-distributive lattice of propositions, and from quantum superpositions, which would entail new rules for quantum disjunctions. While the quantum logic program is not as popular as it once was, a crucial question remains unsettled: what is the relationship between the logical structures (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  3.  24
    Reverse Physics: From Laws to Physical Assumptions.Christine A. Aidala & Gabriele Carcassi - 2022 - Foundations of Physics 52 (2):1-10.
    To answer foundational questions in physics, physicists turn more and more to abstract advanced mathematics, even though its physical significance may not be immediately clear. What if we started to borrow ideas and approaches, with appropriate modifications, from the foundations of mathematics? In this paper we explore this route. In reverse mathematics one starts from theorems and finds the minimum set of axioms required for their derivation. In reverse physics we want to start from laws or more specific results, and (...)
    No categories
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  4.  7
    On the Reality of the Quantum State Once Again: A No-Go Theorem for ψ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\psi$$\end{document}-Ontic Models. [REVIEW]Christine A. Aidala, Andrea Oldofredi & Gabriele Carcassi - 2024 - Foundations of Physics 54 (1):1-15.
    In this paper we show that ψ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\psi$$\end{document}-ontic models, as defined by Harrigan and Spekkens (HS), cannot reproduce quantum theory. Instead of focusing on probability, we use information theoretic considerations to show that all pure states of ψ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\psi$$\end{document}-ontic models must be orthogonal to each other, in clear violation of quantum mechanics. Given that (i) Pusey, Barrett and Rudolph (PBR) previously showed that ψ\documentclass[12pt]{minimal} \usepackage{amsmath} (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark